MMP Learning Seminar.
$W_{\text {eek }} 75$.
Introduction to the theory of complements.

Theory of complements: $\quad \mathbb{K}=\mathbb{K}$, char $\mathbb{K}=0, \mathbb{Q}$-division.
Definition: $(X, \Delta)$ log pair $X \xrightarrow{\varphi} Z$ prog contraction. Let $z \in Z$ a closed point. A $Q$-complement is an effective $B \geqslant \Delta$ for which: around $z$.

1) $(X, B)$ has $\log$ canonical sing over a neighborhood of $z \in Z$.
2) $W x+B \equiv \equiv^{0}$ on a neighborhood of $z \in Z$.

In this case we say that $(X, \Delta)$ is Q2-complemental over the preingege of a neighborhood of $z \in Z$.

Rms: $K_{x}+B \equiv z 0 \Longrightarrow K_{x}+B \sim_{Q, z 0}$ Coy work of Fusing and Gongyo).

Example: $\quad Z=p t, \Delta=0$. $A \mathbb{Q}$-complement is nothing else than an effective drucior $0 \leqslant B \sim 0-K_{x}$ for which $(X, B)$ has $\log$ canonical sing, ie., $\log C Y$ structure on $X$.

Example: $\mathbb{D}^{2} \longrightarrow p t . \quad Q$ - complement.


$$
\left(\mathbb{D}^{2}, L_{1}+L_{2}+L_{3}\right)
$$


$\left(\| D^{D}, \frac{1}{2} L_{1}+\cdots+\frac{1}{2} L_{\sigma}\right)$
2-comp


$$
\left(L^{2}, L+C\right)
$$


$\left(\mathbb{I D}^{\prime}, \frac{1}{2} L_{1}+\frac{1}{2} L_{2}+C\right)$
2-comp.

$\left[\mathbb{O}^{2}, E\right)$

$\left(H^{D^{2}}, \frac{3}{d} C_{d}\right)$
$d$-comp.

Example: $X \longrightarrow Z, \quad x \in X$ a closed
Then $2 Q$-complement is the structure of a $k$ sing around $x$
$\left(D_{n}, C ; 0\right)$ strictly $i c, \mathbb{Q}$-complement.
$\left(D_{n}, \frac{1}{2} C_{1}+\frac{1}{2} C_{2} i 0\right)$ strictly $l_{\text {. ( ) - complement. }}$ $\overbrace{2-\text { comp. }}$.

Definition: Let $(X, \Delta)$ be a log pair \&
$X \longrightarrow Z$ be a projective contraction.
Let $N$ be a positive integer \& $Z \in Z$ a closed point. We say that $B \geq 0$ on $X$ is a $N$-complement over $Z \in Z$. if the following conditions ave satisfied:
i) $(X, B)$ is $\log$ canonical over a neighborhood of $z \in Z$
i) $N\left(K_{x}+B\right) \approx_{z}^{0}$ after possibly shrinking around $z \in Z$.
in) $N B \geqslant N\lfloor\Delta\rfloor+L(N+1) \Delta\rfloor \sim$ Diophantine approx.
If $N B \geqslant N \Delta$, then we say it is a monotone $N$-comp.

$$
S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Rime 1: $Z=p t, \Delta=0, \quad N$-complement, is an element of $\left|-N K_{x}\right|$ with nice sing.
$R_{\text {mi s 2: }} \quad X \rightarrow Z$ identity and $x \in X$.
A $N$-complement is the structure of a $k$ sing with prescribed index

Conj: Let $\Lambda \subseteq \mathbb{Q}, \bar{\Lambda} \subseteq \mathbb{Q}$ and satisfies the $\triangle C C$.
Let $n$ be a positive integer. There exists $N:=N(n, \Lambda)$ that satisfies the following
Let $(X, \Delta)$ be a $\log$ par \& $X \rightarrow Z$ prog contr $\operatorname{coeff}(\Delta) \subseteq \Lambda$. \& $z \in Z$ a closed point If $(X, \Delta)$ is $Q$-complemented over $Z \in Z$, then $(X, \Delta)$ is $N$-complemented over $Z \in Z$.

Phrasing: It a variety admits a KC structures then we can find it in a effective way Sin terms of $\operatorname{tim} X$ )

$$
\left|-k_{x}\right|,|-2 k x|,|-3| k x \mid, \ldots
$$

Remark $X \rightarrow Z \quad F_{2 n o}$ type, ie., There exists $\Delta \geqslant 0$ for which $-(K x+\Delta)$ net \& brig over $Z$ \& $(X, \Delta)$ is kit

$$
1-m(K x+\Delta) / z \mid \geqslant P
$$

$(X, \Delta+I / m)$ is a $\mathbb{Q}$-complement over $Z$.
Example, $n=1, \Delta\rfloor=S \mid, Z=p t$

$$
\begin{aligned}
& E, \quad K_{E} \sim 0 \text {. } \\
& \rightarrow N=6 \text {. } \\
& \text { 1-comp } \\
& \left(\mathbb{D}^{\prime}, 1-\frac{1}{n}\left\{x+1-\frac{1}{m}\{01) \longrightarrow\left(\mathbb{D}^{\prime},\right\} 01+\{001)\right.\right. \\
& \left(4^{3}, 101+\frac{1}{2}\left\{11+\frac{1}{2}\{00\}\right) \longrightarrow 2\right. \text {-comp } \\
& \left(\mathbb{I}^{D^{\prime}}, \frac{1}{2}\left\{01+\frac{1}{2}(1)+\frac{1}{2} 221+\frac{1}{2} 3002\right) \longrightarrow 2-\right.\text { comp } \\
& \left.\left(\mathbb{P}^{\prime}, \frac{1}{2}\{0\rangle+\frac{3}{4}\{1\}+\frac{4}{5}\{00\}\right) \longrightarrow\left(\mathbb{P}^{\prime}, \left.\frac{1}{2} \right\rvert\, 0\right\}+\frac{3}{4}|1|+\frac{5}{6}\{0\rangle\right) \\
& \text { 6-comp. }
\end{aligned}
$$

- $n$-dimensional Fano varieties can be "effectively" turned into CY pairs.
- X smooth CY of $\operatorname{dim} n$, then we can find

2 flat degeneration $X \longrightarrow A)^{1}$ for which $\chi_{t} \simeq x$.
$X_{0}$ is sue with $n$ comp intersecting non-trivially.
$\left(D\left(x_{0}\right)\right.$ is $(n-1)$-dimensional)
$\longrightarrow \chi$ is a maximal unipotent degeneration
$\longrightarrow X$ is a coregulavity zero degeneration
Any component of $X_{0}$ is birational to a Fam type vav, in particular. any comp is rationally connected.


Proposition 1: $(Y, \Delta)$ a log pair.
$Y \xrightarrow{\varphi} X$ prog Dir morphism.
If $B_{r} \geqslant \Delta$ is a $Q$-comp (ep monotone $N$-comp); then
$B=\varphi_{*} B r$ is a $Q$-comp (reap monotone $N$-comp) of $X$.
Proof: By is a monotone $N$-comp of $(Y, \Delta)$ :
i) $(Y, \Delta r)$ is $\log$ canonical, \&
ii) $\mathrm{N}\left(K_{Y}+\Delta_{r}\right) \sim 0$.
effective divisors, both $\varphi$-exceptional.
$\varphi^{*}\left(K_{x}+B\right)=K_{r}+B_{r}+\overbrace{E-F}$ and they have no common comp.

$$
\begin{aligned}
& E-F \sim_{a} \varphi^{*}\left(K_{x}+B\right) \\
& E-F \sim Q, \times 0 \text {. } \\
& \left.\begin{array}{rl}
\varphi_{*}(E-F)=0, \quad \text { neg Lemma } & \Longrightarrow E \geqslant F \\
n e g \text { Lemma } & \Longrightarrow F \geqslant E
\end{array}\right\} \quad E=F=0 . \\
& \varphi^{*}\left(K_{x}+B\right)=K_{r}+B_{r} \\
& \text { - is log canonical. } \\
& N\left(k r+B_{r}\right) \sim 0, \quad \varphi_{*} N(k r+B r) \sim 0 \quad N\left(k_{x}+B\right) \sim 0
\end{aligned}
$$

Proposition 2: $(X, \Delta)$ log canonical pair.
Let $X \xrightarrow{\varphi}, X^{\prime}$ be a sequence of steps of the $\left(-\left(K_{x}+\Delta\right)\right)$-MMP. Assume $\left(X^{\prime}, \Delta^{\prime}\right)$ is $K$, where $\Delta^{\prime}=\varphi_{*} \Delta$. Let ( $X^{\prime}, B^{\prime}$ ) be a $N$-comp of $\left(X^{\prime}, \Delta^{\prime}\right)$. Then $(X, \Delta)$ admits a $N$-comp.

Proof :


$$
p^{*}\left(k_{x}+\Delta\right)=q^{x}\left(k_{x^{\prime}}+\Delta^{\prime}\right)-F
$$

In particular.

$$
\alpha_{E}\left(x^{\prime}, \Delta^{\prime}\right) \leq \alpha_{E}(x, \Delta)
$$

$$
\begin{aligned}
q^{*}\left(K_{x^{\prime}}+B^{\prime}\right)=K_{y}+B_{r} \quad & \left(Y, B_{r}\right) \text { sub -k \& } \\
& N\left(K_{r}+B_{r}\right)
\end{aligned}
$$

Set $B=p_{*} B r$.
$(X, B)$ is sub-lc \& $N\left(K_{x}+B\right) \sim 0$
$B$ is a boundary $\Longleftrightarrow \alpha_{E}(X, B) \in[0,1]$ for all $E \subseteq X$.

$$
1 \geqslant \alpha_{E}(X, \Delta) \geqslant a_{E}\left(X^{\prime}, \Delta^{\prime}\right) \geqslant a_{E}\left(X^{\prime}, B^{\prime}\right)=\alpha_{E}(X, B) \geqslant 0
$$

Strategy for the conj:
this is implied $X$ Fans variety of $\operatorname{dim} n$.

1) Look at all Q - complements of $2 l l$ exc Fans of If all. of them are kill, then is called an exceptional Fans. In this case, we expect that belong. to a bounded family.

2) $(X, B)\left(\mathbb{Q}\right.$ - comp which is strictly $l_{c}$.
$(Y, B_{y}+\underbrace{E_{1}+\cdots+E_{k}}_{S})$ dit modification.
It suffices to produce a $N$-comp of
$(Y, \underbrace{E_{1}+\cdots+E_{K}})$ by Prop 1.

$$
S \quad(Y, S)
$$

$$
\begin{aligned}
& \left(Y, B_{Y}+5\right) \text { dlt } \& K_{Y}+B_{Y}+5 \equiv 0 \\
& \left(Y_{1}(1+\varepsilon) B_{T}+5\right) \text { dlt. } \\
& K_{y}+(1+\varepsilon) B_{y}+5 \sim a \quad \varepsilon B_{y} \sim_{Q}-\varepsilon\left(K_{y}+5\right) \\
& \downarrow \\
& \text { MMP } \\
& \text { MMP } \\
& Y \longrightarrow Y^{\prime} \quad\left(Y^{\prime}, S^{\prime}\right) \quad \begin{array}{l}
\text { By Prop } 2 \text { is } \\
\begin{array}{l}
\text { enough to complement this. }
\end{array} \\
\\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

Replace $X \rightarrow u\left(Y^{\prime}, S^{\prime}\right)$

Assume $(X, 5)$ is $l_{c} \quad-\left(K_{x}+5\right)$ semiample.

$$
X \longrightarrow Z \text { ample model. }
$$

2.1) $\operatorname{dim} X=\operatorname{dim} Z, \quad-\left(k_{x}+5\right)$ semiample + by $\ /$
2.2) $\operatorname{dim} z=0, \quad K x+S \equiv 0$.
2.3) $\operatorname{dim} Z \in\{1, \ldots, \operatorname{dim} X-1\}$. the coeff?


$$
\begin{aligned}
& H^{0}\left(N\left(K_{x}+5\right)\right) \neq 0 \\
& H^{0}\left(N\left(K_{x}+5\right)\right) \longrightarrow H^{0}\left(H^{0}\left(N_{s}+\Delta_{5}\right)\right)
\end{aligned}
$$

2.1) $\quad \operatorname{dim} X=\operatorname{dim} z, \quad-(k x+5)$ semiample $+b y$
$-(K x+S)$ is ample (lose $Q$-factorial).

$$
\begin{gathered}
H^{1}\left(-k_{x}-2 s\right)=0 \Longrightarrow \\
H^{0}\left(-\left(k_{x}+s\right)\right) \longrightarrow H^{0}\left(-\left(K_{s}+\Delta s\right)\right) .
\end{gathered}
$$


$\left(Y, \Delta_{y}+S\right)$ plt

$$
\text { plt blow-ups }<\substack{\text { MMP }} \substack{\text { technizues fron } \\ \text { MMP }}
$$

( $X, \Delta i x) \quad$ klt sing of $\operatorname{dim} n$

$$
\operatorname{coeff}(\Delta) \subseteq \mathscr{S}=\left\{\left.1-\frac{1}{m} \right\rvert\, m \in \mathbb{N}\right\}
$$

$\left(K_{c}+\Delta y+S\right) \quad$ anti-ample over $X$ $\Delta_{r}$ strict. transform of $\Delta$.
$\log F_{\text {ano }}$ of $\operatorname{dim} n-1$

$$
\left.\begin{array}{rl}
N\left(K_{s}+B_{s}\right) \sim 0 \\
B_{r} &
\end{array}\right) \begin{aligned}
& \text { some MM } \\
& H_{0}\left(-\left(K_{r}+\Delta_{r}+s\right)\right)
\end{aligned} \longrightarrow H^{0}\left(-N\left(K_{s}\right)\right)
$$

some MMP resolts.

Q: Is it $\log$ canonical?

$\left(s, B_{s}\right)$ not $l_{c}$

$$
\downarrow\left\{\begin{array}{l}
(Y, B r+\Delta r+s) \text { is } k\} \\
\text { around s }
\end{array}\right.
$$

$X$

$$
\left\{\begin{array}{c}
\text { The: }(X, B) \text { pair \& }-\left(K_{x}+B\right) \text { ample } \\
\text { The non-kit locus is connected }
\end{array}\right\}
$$

Second main theorem on complements.
Theorem 1.4: Assume BAB conjecture in $\operatorname{dim} n$. (boondads of Fino varieties with mil singularities)

$$
t
$$

Effective canonical bundle formula conj. in $\operatorname{dim} n$

$$
\|
$$

Existence of bounded complements in $\operatorname{dim} n$.

Redo $2.1+2.2$. they explain how to use the cbf to solve 2.3 .
2.3) $\operatorname{dim} Z \in\{1, \ldots, \operatorname{dim} X-1\}$

$$
\begin{array}{ll}
x & K_{x}+S \sim e^{*}\left(K_{z}+B_{z}+M_{z}\right) \\
\varphi \\
z
\end{array}
$$

$X$ Fans type $\Longrightarrow Z$ Fans type

$$
M_{z} \geq 0
$$

Find a $N$-complement $\Gamma_{z} \geqslant 0$ of $\left(z, B_{z}+M_{z}\right)$

$$
\begin{aligned}
& N\left(N_{z}+B_{z}+M_{z}+\Gamma_{z}\right) \sim 0 \text { g } \quad\left(z, B_{z}+M_{z}+\Gamma_{z}\right) \text { is } k_{c} \\
& \begin{array}{|}
\Gamma_{x}:=e^{*}\left(\Gamma_{z}\right) \\
K x+S+\Gamma_{x} \equiv 0 .
\end{array} \longrightarrow\left\{\begin{array}{l}
\text { coefficients of } \Gamma_{x} \\
\text { are controlled by oft } \\
\text { of } \Gamma_{z}
\end{array}\right. \\
& N(N x+S+\Gamma x) \sim 0 \Longleftarrow \operatorname{step} 2.2 \\
& \left(X, S+I_{x}\right) \text { is } l_{c} \Longleftarrow N_{x}+S+\mathcal{L}_{x} \sim_{Q} \\
& \varphi^{x}\left(\mu_{z}+B_{z}+M_{z}+I_{z}\right) \text {. } \\
& \text { (preserves sing.) }
\end{aligned}
$$

$$
\begin{array}{ll}
\left(X_{i} ; x\right) & \text { sing. } \\
(X, B ; x) & W\left(K_{x}+B\right) \sim 0 .
\end{array}
$$

$$
\nu^{x}
$$

$\uparrow$
index one coyer of $K_{x}+B$ has degree $N$.
$K x+B$ is Cartier on $x^{s m}$

$$
\pi_{\perp}\left(X^{s m} ; x\right) \longrightarrow \mathbb{Z}_{i N} .
$$

